Paradoks deret harmonik

Weew…ternyata interpretasi geometris dari dua deret tak hingga terkenal: Deret harmonik dan deret Basel bisa menimbulkan paradoks, jika kedua deret tersebut digabung . Mmm…paradoksnya mirip dengan paradoks terompet Jibril. Just watch the video, dude :)

———————————————————————————————————————————————-

**Ingin mendapatkan kaos unik bertema matematika silahkan kunjungi kaos.ariaturns.com**

Deret Harmonik

Pada postingan sebelumnya saya membahas bahwa deret  \sum_{k=1}^{\infty}\frac{1}{k^{2}} konvergen ke 2 atau dengan kata lain \sum_{k=1}^{\infty}\frac{1}{k^{2}}=2. Sekarang kita hilangkan kuadratnya sehingga deret tersebut menjadi

{\displaystyle \sum_{k=1}^{\infty}\frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\ldots}

Deret diatas dikenal dengan nama Deret Harmonik

Apakah deret harmonik konvergen? Tidak, deret harmonik divergen

Bagaimana cara membuktikan kedivergenannya?

Ada banyak caranya tetapi saya akan memakai cara yang digunakan Honsberger (1976) Menurut saya cara yang dipakainya adalah cara yang paling sederhana dan mudah dipahami.

Diketahui \frac{1}{n}+\frac{1}{n+1}>\frac{2}{n+1} untuk n bilangan asli, andaikan deret harmonik konvergen ke S diperoleh

S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\ldots

S=\left(1+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}\right)+\left(\frac{1}{7}+\frac{1}{8}\right)+\ldots

S>\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{6}+\frac{1}{6}\right)+\left(\frac{1}{8}+\frac{1}{8}\right)+\ldots

S>1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\ldots

S>S

Jelas S>S suatu hal yang kontradiksi. Terbukti deret harmonik divergen.

QED

Untuk cara pembuktian lainnya silahkan unduh di sini

———————————————————————————————————————————————-

**Ingin mendapatkan kaos unik bertema matematika silahkan kunjungi kaos.ariaturns.com**