Memperoleh rumus volume dan luas permukaan Bola

Postingan kemarin, saya membahas bagaimana rumus volume limas diperoleh. Sekarang saya akan membahas bagaimana rumus volume bola {\displaystyle V=\frac{4}{3}\pi r^{3}}  diperoleh.

Diketahui  persamaan lingkaran dengan jari-jari r dengan titik pusat berada di titik asal pada kordinat kartesius adalah

x^2+y^2=r

solusi untuk y:

y=\pm\sqrt{r^{2}-x^{2}}

Sekarang perhatikan setengah lingkaran bagian atas

y=\sqrt{r^{2}-x^{2}}

fungsi y=\sqrt{r^{2}-r^{2}} kontinyu pada interval \left[-r,r\right]. Jika setengah lingkaran tersebut diputar, kita akan mendapatkan bola. Gunakan metode cakram untuk memperoleh volumenya.

V=\pi\int_{-r}^{r}y^{2}dx

V=\pi\int_{-r}^{r}\left(\sqrt{r^{2}-x^{2}}\right)^{2}dx

v=\pi\int_{-r}^{r}r^{2}-x^{2}dx

V=\pi r^{2}x-\pi\frac{1}{3}x^{3}|_{x=-r}^{x=r}

V=\left(\pi r^{2}r-\pi\frac{1}{3}r^{3}\right)-\left(\pi r^{2}\left(-r\right)-\pi\frac{1}{3}\left(-r\right)^{3}\right)

V=2\pi r^{3}-\frac{2}{3}\pi r^{3}

{\displaystyle V=\frac{4}{3}\pi r^{3}}

Voila, kita mendapatkan rumus volume bola.

Selanjutnya kita akan membahas rumus luas permukaan Bola 4\pi r^{2}

Darimana rumus luas permukaan bola diperoleh?

Bayangkan sebua bola dengan jari-jari r tersusun dari potongan-potongan berbentuk limas sebanyak n→∞. Semua limas mempunyai tinggi r dan mempunyai titik puncak di titik pusat bola perhatikan gambar dibawah

Jadi permukaan bola tersusun dari alas-alas limas. Misalkan luas permukaan alas limas dari yang pertama sampai ke-n adalah L_{1},L_{2}\ldots,L_{n} maka luas permukaan bola adalah penjumlahan semua luas alas limas.

LB=L_{1}+L_{2}+\ldots+L_{n}.

Karena bola tersusun dari potongan-potongan limas maka volume bola adalah hasil penjumlahan semua volume limas.

V=\frac{1}{3}rL_{1}+\frac{1}{3}rL_{2}+\ldots+\frac{1}{3}rL_{n}

V=\frac{1}{3}r\left(L_{1}+L_{2}+\ldots+L_{n}\right)

V=\frac{1}{3}rLB

Telah kita bahas diatas bahwa volume bola adalah {\displaystyle V=\frac{4}{3}\pi r^{3}}

\frac{4}{3}\pi r^{3}=\frac{1}{3}rLB

4\pi r^{2}=LB

Voila kita mendapatkan rumus permukaan bola 4\pi r^{2}.

Sumber gambar: mathschallenge.net dan proofwiki.org

10 thoughts on “Memperoleh rumus volume dan luas permukaan Bola

  1. Maaf, mas, saya bukan praktisi matematika, walaupun saya suka matematika. Saya mampir ke situs ini aja karena PR anak saya. :)

    Saya tidak mengomentari materi sampeyan, karena menurut saya, materinya bagus-bagus. Cuma ada satu yang agak mengganjal, yaitu ucapan ‘VIOLA’ di akhir postingan. Menurut pengetahuan saya yang terbatas, seharusnya bunyinya ‘VOILA’. Itu-pun kata guru bahasa Perancis saya belasan tahun yang lalu :D.

    Sebelumnya mohon maaf.

  2. Pingback: Memperoleh rumus volume dan luas permukaan Bola « Erli Oktafia Silitonga's Weblog

Silahkan, tinggalkan komentar

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s